Singular subalgebroids
نویسندگان
چکیده
We introduce singular subalgebroids of an integrable Lie algebroid, extending the notion subalgebroid by dropping constant rank requirement. lay bases a theory for subalgebroids: we construct associated holonomy groupoids, adapting procedure Androulidakis-Skandalis foliations, in way that keeps track choice groupoid integrating ambient algebroid. The groupoids are topological and suitable noncommutative geometry as they allow construction convolution algebras. Further carry out morphisms functorial way.
منابع مشابه
On the Integrability of Lie Subalgebroids
Let G be a Lie groupoid with Lie algebroid g. It is known that, unlike in the case of Lie groups, not every subalgebroid of g can be integrated by a subgroupoid of G. In this paper we study conditions on the invariant foliation defined by a given subalgebroid under which such an integration is possible. We also consider the problem of integrability by closed subgroupoids, and we give conditions...
متن کاملSingular constrained linear systems
In the linear system Ax = b the points x are sometimes constrained to lie in a given subspace S of column space of A. Drazin inverse for any singular or nonsingular matrix, exist and is unique. In this paper, the singular consistent or inconsistent constrained linear systems are introduced and the effect of Drazin inverse in solving such systems is investigated. Constrained linear system arise ...
متن کاملExplicit multiple singular periodic solutions and singular soliton solutions to KdV equation
Based on some stationary periodic solutions and stationary soliton solutions, one studies the general solution for the relative lax system, and a number of exact solutions to the Korteweg-de Vries (KdV) equation are first constructed by the known Darboux transformation, these solutions include double and triple singular periodic solutions as well as singular soliton solutions whose amplitude d...
متن کاملGeneralized Helices and Singular Points
In this paper, we define X-slant helix in Euclidean 3-space and we obtain helix, slant helix, clad and g-clad helix as special case of the X-slant helix. Then we study Darboux, tangential darboux developable surfaces and their singular points. Especially we show that the striction lines of these surfaces are singular locus of the surfaces.
متن کاملSingular and Totally Singular Generalised Quadratic Forms
In this paper we present a decomposition theorem for generalised quadratic forms over a division algebra with involution in characteristic 2. This is a generalisation of a decomposition result on quadratic forms in characteristic 2 from [3] and extends a generalisation of the Witt decomposition theorem for nonsingular forms to cover forms that may be singular.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Fourier
سال: 2022
ISSN: ['0373-0956', '1777-5310']
DOI: https://doi.org/10.5802/aif.3493